تم تحميل ورفع المادة على منصة

للعودة الى الهوقع اكتب في بحث جوجل

الشعبة:

اسم الطالب:

<u>السؤال الأول:</u> اكتب المصطلح العلمي المناسب:

المصطلح	التعريف	٩
	الكواكب تتحرك في مدارات إهليلجيه وتكون الشمس في إحدى البؤرتين.	1
	الخط الوهمي من الشمس الى الكواكب يمسح مساحات متساوية في أزمن متساوية.	2
	مقياس لممانعة أو مقاومة الجسم لأي نوع من القوى.	3
	الزمن اللازم للمذنب ليكمل دورة واحدة.	4
	مربع النسبة بين زمنين دوربين لكوكبين يساوي مكعب النسبة بين متوسطي بعديهما عن الشمس.	5
	الأجسام التي تجذب أجساماً أخرى بقوة تتناسب طردياً مع حاصل ضرب كتلتها وعكسيا مع مربع المسافة بين مراكزها.	6
	قوة جذب الأرض للجسم.	7
	حالة يكون فيها الوزن الظاهري للجسم صفراً.	8
	التأثير المحيط بجسم له كتله.	9
	نسبة مقدار القوة المحصلة المؤثرة في جسم ما الى مقدار تسارعه.	10

				، الكوكب:	لدارات	حسب قانون كبلر الأول فإن ه	1
کرویة	د	إهليلجيه	ج	خطية	ب	أ دائرية	
				ء دورانه فإن مقدار سرعته:	ں أثنا	كلما اتقرب الكوكب من الشمس	2
لا يمكن التنبؤ بها	۵	تقل	ج	تبقى ثابته	ب	أ تزداد	
			ري:	ي حول الأرض فإن زمنه الدو	بطناع	كلما زاد نصف قطر القمر الاص	3
لا يمكن التنبؤ بها	د	يقل	ج	يبقى ثابت	ب	أ يزداد	
			ں:			من العوامل المؤثر على الزمن	4
حجم الكوكب	۵	حجم الشمس	ج	كتلة الكوكب	ب	أ نصف قطر مدار الكوكب	
				طردياً مع:	اسب	قوة الجاذبية بين الجسمين تتن	5
جميع ما سبق	د	مربع المسافة بينهما	ج	ثابت الجذب الكوني	ب	أ كتلة الجسمين	

			عكسياً مع:	اسب	قوة الجاذبية بين الجسمين تتن	6
د مربع السرعة	مربع نصف القطر	ج	السرعة	ب	أ نصف القطر	
	بما:	، بینه	الى الضعف فإن قوة التجاذب	سمين	إذا زادت المسافة بين مركز جس	7
د تقل الى الربع	تزداد أربع اضعاف	ج	تقل الى الضعف	ب	أ تزداد الى الضعف	
'	له بالنظام الدولي للوحدات:	قیاس	وتكون وحدة $G=6.67$	10	قيمة ثابت الجذب الكوني ¹¹⁻	8
د N.m²/kg²	N.m²/kg	ج	N/m ² .kg ³	ب	N/m².kg أ	
<u>'</u>					$\mathit{GM/r^2}$: العلاقة الرياضية	9
د غير ذالك	سرعة الدوران	ج	المجال الجاذبي	ب	أ قوة التجاذب	
					الشكل المجاور يمثل:	10
د تغير درجة حرارة ا	الضغط الجوي للأرض	ج	المجال المغناطيسي للأرض	ب	أ مجال الجاذبية الأرضية	
'	:	ۣۻية	الناتج عن مجال الجاذبية الأر	سارع	كلما ابتعدنا عن الأرض فإن الت	11
د غير ذالك	يقل				أ يزداد	
			كتلة الجاذبية:	صور	مبدأ التكافؤ نيوتن فيه كتلة الق	12
د غير ذالك	أصغر من	ج			أ أكبر من	
					أي من الطرق الآتية تستخدم أ	13
د ميزان القصور	مقياس الحرارة	ج	البكرة	ب	أ الميزان ذو الكفتين	
					توصل الى أن الأرض والكواكب	14
د نیوتن	كبلر	ج			أ كوبر نيكس	
				مد علم	قوة التجاذب بين جسمين تعتد	15
د الزمن الدوري والك	الكتلة والكثافة	ج	الكتلة والمسافة	ب	أ الحجم والمسافة	
					تستخدم تجربة كافندش في قيا	16
د جمیع ما سبق	قيمة ثابتة الجذب الكوني	ج	تكور الاجسام		أ كتلة الاجسام	
				اعي	السرعة المدارية للقمر الاصطن	17
د ضعف	تزيد عن	ج	تتوافق مع	ب	أ تقل عن	
					اتجاه المجال الجاذبي للأرض:	18
د جمیع ما سبق	خارج مركز الأرض	ج	موازي لسطح الأرض	ب	أ نحو مركز الأرض	
			<u> </u>	لجس	يستعمل لحساب كتلة القصور	19
د جمیع ما سبق	ميزان القصور	ج	قانون نيوتن الثالث	ب	أ الميزان ذو الكفتين	

الشعبة:

اسم الطالب:

<u>السؤال الأول:</u> اكتب المصطلح العلمي المناسب:

المصطلح	العبارة	م
	التغير في الزاوية أثناء دوران الجسم.	1
	الإزاحة الزاوية مقسوماً على الزمن الذي يتطلبه حدوثها.	2
	التغير في السرعة الزاوية مقسوماً على الفترة الزمنية التي حدث خلالها هذا التغير.	3
	مقياس فاعلية القوة في إحداث الدوران.	4
	المسافة العمودية من محور الدوران الى نقطة تأثير القوة.	5
	عدد الدورات الكاملة التي يدورها الجسم في الثانية الواحدة.	6
	المسافة بين محور الدوران ونقطة تأثير القوة.	7
	نقطة في الجسم تتحرك بالطريقة نفسها التي تتحرك بها النقطة المادية	8
	قوة ظاهرية غير حقيقية نشعر بها تظهر وكأنها تدفع الجسم للخارج.	9
	تسارع ناشئ عن الحركة الدائرية واتجاهه نحو المركز.	10

	عندما يدور الجسم مع عقارب الساعة فإن إزاحته الزاوية:								
تكون سالبة	٤	تكون موجبة	ح	تزيد	ب	أ تقل			
	مضى من الزمن الآن min على ساعة الحائط ما مقدار الإزاحة الزاوية لعقرب الثواني:								
20π rad	٥	10π rad	ج	5π rad	ب	2π rad ¹			
		ول محوره:	دار ح	40π فهذا يعني أن الجسم د	rad	إذا كانت الإزاحة الزاوية لجسم	3		
200 rev	٥	100 rev	ح	50 rev	ب	20 rev 1			
				ول محور ثابت يساوي:	ور ح	الدورة الكاملة لجسم صلب يد	4		
2 rad	٥	π rad	ج	4π rad	ب	2π rad [†]			
		هي:	إديان	دقائق خلال نصف دورة بالرا	رب ال	الإزاحة الزاوية التي يقطعها عق	5		
2π	٥	π	ج	$\frac{\pi}{2}$	ب	$\frac{\pi}{4}$			

لزاوية على الحافة الخارجية:	عته اا	بطية هي 20m/s كم تبلغ سرع	ه الخ	دراجة يساوي cm 50 وسرعت	ىجلة ،	نصف قطر الحافة الداخلية ل	6
400rad/s	٥	40rad/s	ج	1rad/s	ب	0.4rad/s أ	
		المتجهة والزمن تعطي:	ٳۅۑؖۛ	لعلاقة البيانية بين السرعة الز	من ا	ميل الخط المستقيم المرسوه	7
التسارع الزاوية	٥	الإزاحة الزاوية	ج	التسارع	ب	أ الإزاحة	
		ماوي:	ِي يس	ِ 1500 rev فإن تسارعه الزاو	/min	يدور إطار لعبة ثابت مقداره	8
5rad/s ²	٥	صفراً	ج	سالب	ب	أ موجب	
			: ?	قوة اللازمة لإحداث هذا العز	فإن الن	كلما زادت قيمة ذراع القوة L ك	9
تنعدم	٥	تقل	ج	تبقى ثابتة	ب	أ تزداد	
				ِن الزاوية بين F,r تساوي:	ما تكو	يكون العزم أكبر ما يمكن عند	10
180	٥	90	ج	45	ب	°0 1	
				ن السرعة الزاوية المتجهة له	كن فإ	عندما يؤثر عزم على جسم سأ	11
تتغير	٥	تزداد دائما	ج	تبقى ثابتة	ب	أ تقل دائما	
	Στ=	${0}$ الأول: 0 الشرط الثاني:	ئىرط	برطين التاليين فإنه يكون: الن	من النا	إذا تحقق في جسم صلب كلا م	12
غير متزن	٥	متزن اتزان ساكن	ج	متزن انتقاليا فقط	ب	أ متزن دورانيا فقط	
		ع بحيث تكون:	تصن	ً ة ومستقرة على الأرض لذلك	ل متزن	يجب أن تكون سيارات السباة	13
قاعدتها ضيقة ومركز	٥	قاعدتها ضيقة ومركز	ج	قاعدتها عريضة ومركز		أ قاعدتها عريضة ومركز	
كتلتها منخفض		كتلتها مرتفع		كتلتها منخفض		كتلتها مرتفع	1.0
. 1		7				لا تطبق قوانين نيوتن على الأر	14
جمیع ما سبق	٥	القصورية	E .			أ المتسارعة حركة العربة الدوارة في مدينة	15
دائرية		اهتزازية	_	ب حرده. دورانية		خرفه العربه الدواره في مدينه	
دادریه	٥	اهمراريه		دورانيه قع مركز كتلة الشخص العاد؟		ا حطيه موقع مركز كتلة الطفل	
غير ذالك	٥	*:		فع مردر دینه ان <i>سخ</i> ص انعاده اعلی من		موقع مردر دلله الطفل	10
عير دانت	٥					ا الحل من قوة ظاهرية غير حقيقية نشع	17
جمیع ما سبق	•	القوة الوهمية				قوة كاهرية غير حقيقية نسع	17
							10
		e e				يحاول طفل استخدام مفتاح يؤثر بها الطفل عموديا في المف	18
0.25m	٥	0.15m	ج	0.2m	ب	0.1m أ	
ر به محمد في الباب:	،ي أث	 4من محور دورانه ما لعزم الذ	0 cn	ا ۲ في باب غرفته وعلى بعد (ِها N(ا أثر محمد بقوة عمودية مقدار	19
0N.m	٥	4N.m	ج	16N.m	ب	1600N.m أ	
		متجهة هي:	ية ال	المركزي $a_{ m c}$ مع السرعة الزاو	∟ تسارع	 العلاقة الرياضية التي تجمع ال	20
$a_c = \omega^2 r$	٥	$a_c = \omega^2 r^2$	5	$a_c = \omega r^3$	ب	$a_c = \omega r^2$	

الشعبة:

السؤال الأول: اكتب المصطلح العلمي المناسب:

المصطلح	العبارة	م
	حاصل ضرب متوسط القوة المؤثرة على جسم في زمن تأثيرها.	1
	حاصل ضرب كتلة الجسم في سرعته المتجهة.	2
	الدفع على جسم يساوي زحمه النهائي مطروحاً منه زخمه الابتدائي.	3
	زخم أي نظام مغلق ومعزول لا يتغير.	4
	النظام الذي لا يكتسب كتلة ولا يفقدها.	5
	النظام الذي تكون محصلة القوى الخارجية المؤثرة عليه = صفراً.	6

				J 65 C, 5	••	<u>.يسي.</u> ۱ - و بې بې د بې	<u> </u>	<u></u>
					عمه:	لما قلت سرعة الجسم فإن زخ	کا	1
لا يمكن التنبؤ	٥	يزداد	ج	ثابت	ب	يقل	اً	
						جاه الزخم يكون دوماً باتجاه :	ات	2
تغير الزخم	د	التسارع	ج	القوة	ب	السرعة	اً	
		ري:	تساو	200 kg.m/s تكون سرعتها	خمها	راجة هوائية كتلتها 40 kg وز	در	3
0.5m/s	٥	5m/s	ج	50m/s	ب	20m/s	اً	
				فإن زخمه يزداد بمقدار:	بعاف	ا زادت سرعة الجسم ستة أض	إذ	4
36 ضعف	٥	تسعة أضعاف	ج	ستة أضعاف	ب	ثلاث أضعاف	أ	
				هي :	دولي	حدة قياس الدفع في النظام ال	و-	5
N/s ²	٥	N.s ²	ج	N/s	ب	N.s	١	
) يمثل:	الزمن)	مساحة تحت منحنى (القوة-	ال	6
الدفع	٥	الزخم	ج	التسارع	ب	السرعة	١	
						جاه الدفع يكون دوماً باتجاه:	ات	7
جميع ما سبق	٥	القوة	ج	تغير الزخم	ب	تغير السرعة	ٲ	
				نظرية:	تمثل	علاقة الرياضية F.Δt=m.Δv	ال	8
الدفع	د	الدفع-الزخم	ج	القوة- الزخم	ب	القوة – العزم	اً	
						بدأ عمل الوسائد الهوائية:	م	9
تقليل القوة وزيادة الزمن	٥	زيادة القوة وتقليل الزمن	ج	تقليل كلا من القوة والزمن	ب	زيادة كلا من القوة	ٲ	
						والزمن		
				م مجموع زخميهما و			مع	10
جميع ما سبق	٥	يساوي				أكبر من	1	
				فع محرك الصاروخ الكيميائي:		-	دو	11
جميع ما سبق	٥	يساوي	ح	أكبر من	ب	أصغر من	Ī	

اسم الطالب:

السؤال الأول: اكتب المصطلح العلمي المناسب:

المصطلح	العبارة	م
	قدرة الجسم على إحداث تغيير في ذاته أو فيما يحيط به.	1
	الطاقة الناتجة عن حركة الجسم.	2
	إذا بُذِلَ شغل على جسم ما فإن طاقته الحركية تتغير.	3
	انتقال الطاقة بطرائق ميكانيكية.	4
	المعدل الزمني لبذل الشغل.	5
	انتقال طاقة مقدارها $1 \ J$ خلال فترة زمنية مقدارها $2 \ J$.	6
	نسبة المقاومة الى القوة.	7
	إزاحة القوة مقسومة على إزاحة المقاومة.	8
	نسبة الفائدة الميكانيكية الى الفائدة الميكانيكية المثالية.	9
	الشغل الذي يُبذل على الألة.	10
	الشغل الذي تَبذُلُه الألة.	11
	نسبة الشغل الناتج الى الشغل المبذول.	12
	الآلة التي تتكون من آلتين بسيطتين أو أكثر ترتبطان معاً.	13

إذا تعامدت القوة F على الإزاحة الحاصلة على الجسم b فإن الشغل يكون: أ أكبر ما يمكن ب أقل ما يمكن على التنبؤ								
-	صفر	، أقل ما يمكن	اب	أكبر ما يمكن	١			
يساوي	بفراً:	سم فإن الشغل يكون دوماً يساو	ی جس			2		
-	الشد	، العمودية	ب	الاحتكاك	١			
ا 10فم	قدار الشغل الذي بذله:	سافة 2m وبقوة قدرها N 10	قي لم	محب طفل عربة بشكل أفغ	سي	3		
-	20 J	2 J	ب	0.2 J	١			
الاحتكا	عند حركة الصندوق 5m :	رها 10 N ما مقدار شغل الاحتاً	ئ قد	اني صندوق من قوة احتكال	يع	4		
-	50 J	-25 J	ب	25 J	١			
		حسب منها:	$\frac{1}{2}n$	nv^2 ملاقة الرياضية التالية	الع	5		
-	الشغل	، الطاقة الحركية	ب	الطاقة الكامنة	١			

30 x (m) 2 4 6				في الرسم البياني المقابل، تم تحريك جسم تحت تأثر قوة متغيرة فما مقدار الشغل المبذول على الجسم لإزاحته 4 m:	6
120 J	٥	80 J	ج	أ 20 J أ	
20 d (m)			نجز	من خلال الرسم البياني لمنحى القوة-الإزاحة، احسب الشغل اله بوحدة (J) عندما يتحرك الجسم مسافة قدرها 15m:	7
12	٥	200	ج	أ 300 ب	
				تتناسب الطاقة الحركية لجسم	8
طردياً مع مربع كتلته	٥	عكسياً مع كتلته	ج	أ عكسياً مع مربع سرعته ب طردياً مع مربع سرعته	
				عند مضاعفة سرعة كرة، فإن طاقتها الحركية:	9
تتضاعف ثمان مرات	٥	تتضاعف أربع مرات	ج	أ تبقى ثابتة ب تضاعف مرتين	
				إذا زادت سرعة الجسم ثلاثة أضعاف فإن طاقته الحركية:	10
تقل للتسع	د	تقل للثلث	ج	أ تزداد ثلاث أضعاف ب تزداد تسعة أضعاف	
-				يقاس الشغل والطاقة بوحدة (N.m) وتكافئ:	11
باسكال	د	نيوتن	ج	أ الجول ب الواط	
				سيارة كتلتها 10 kg وسرعتها 10 m/s ما مقدار الطاقة الحركي	12
5000 N	د			اً 500 J با 500 J	
				جسم طاقته الحركية J وسرعته 4 m/s إن كتلته بوحدة g	13
500	٥			أ 8 ب	
ي v فكم تكون سرعة الثاني:	الأول			عندما تساوت الطاقة الحركية لجسمين وتكون كتلة الجسم الثاني	14
$\frac{v}{\sqrt{2}}$	٥	$\frac{v}{2}$	ج	v^2 أ	
				وحدة قياس القدرة هي :	15
جميع ما سبق	٥	Kg.m ² /s ³		J/s اب W	
				في الآلة الحقيقية دوما الشغل المبذولمن الشغل الناتج	16
لاي مكن التنبؤ	٥	أصغر	ج	أ أكبر بساوي	
				الهدف من استخدام الآلات البسيطة:	17
جميع ما سبق	٥	تقليل الذراع	ج	أ تقليل القوة ب تقليل الشغل	
				إحدى الآلات التالية آلة مركبة:	18
اسفین	٥	الدراجة الهوائية	ج	أ رافعة ب محور ودولاب	
				إذا بذل المحيط الخارجي شغلًا على النظام فإن الشغل يكون:	19
يبقى ثابت	٥	صفراً	ج	أ سالباً ب موجباً	
				إذا زادت الكتلة لجسم ما فإن الطاقة الحركية لهذا الجسم:	20
لا شيء مما ذكر	٥	تبقى ثابتة	ج	أ تزداد ب تقل	
				تفيد الآلات في:	21
لأشيء مما ذكر	٥	أوب صحيحة	ج	أ تسهيل أداء المهام ب تخفيف الحمل	

الفيزياء

اسم الطالب:

السؤال الأول: اكتب المصطلح العلمي المناسب:

المصطلح	العبارة	م
	طاقة مختزنة في النظام نتيجة تأثير قوة الجاذبية.	1
	المستوى الذي تكون عنده طاقة الوضع PE تساوي صفراً.	2
	طاقة مختزنة في الجسم المرن نتيجة تغير شكله.	3
	كتلة الجسم مضروبة في مربع سرعة الضوء.	4
	في النظام المعزول المغلق الطاقة لا تفنى ولا تستحدث.	5
	النظام الذي لا تؤثر فيه أي قوة خارجية.	6
	النظام الذي لا يدخل إليه أو يخرج منه أي جسم.	7
	مجموع الطاقة الحركية وطاقة وضع الجاذبية في النظام.	8
	مجموعة الطاقة الحركية وطاقة الوضع في النظام قبل وقوع الحدث تساوي مجموع الطاقة الحركية وطاقة الوضع في النظام بعد وقوع الحدث.	9
	التصادم الذي تبقى فيه الطاقة الحركية قبل التصادم وبعده متساويتين.	10
	التصادم الذي تقل فيه الطاقة الحركية بعد التصادم عنها قبل التصادم.	11
	التصادم الذي تزداد فيه الطاقة الحركية بعد التصادم عنها قبل التصادم.	12

الطاقة المخزنة بالجسم نتيجة ارتفاعه عن مستوى الاسناد تدعى طاقة:									
سكونيه	د	میکانیکیة	ج	وضع جاذبية	ب	أ وضع مرونية			
				تمكننا من حساب:	PE	العلاقة الرياضية التالية: mgh =	2		
عزم الدوران	د	طاقة وضع الجاذبية	ح	شغل الاحتكاك	ب	أ الطاقة الحركية			
وضع كتاب كتلته 0.5 kg على رف الكتب يرتفع عن سطح الأرض m 1.5 فإن طاقة وضعه بالنسبة لسطح الأرض:									
15 J	٥	20 J		7.35 J		0 J f			
						عندما يمر البندول عند أدنى نقطة ف	4		
لا يمكن التنبؤ بها	٥	أقل ما يمكن	ج	أعلى ما يمكن	ب	أ صفراً			

	ذا بذل المحيط الخارجي شغلا على	النظا	ام فإن الشغل:				
	موجب	ب	سالب	ج	صفر	٥	لا يمكن التنبؤ بها
	ذا بذل المحيط الخارجي شغلا على	النظا	ام فإن طاقته:				
	تزداد	ب	تقل	ج	لا تتغير	٥	لا يمكن التنبؤ بها
	 لطاقة المختزنة في الوقود هي طاقة	:2					
	حركية	ب	میکانیکیة	ج	كيميائية	٥	مرونية
	 طاقة وضع الجاذبية لماء البئر بالنس	مبة لس	مطح الأرض تكون:				
	سالبة	ب	موجبة	ج	صفراً	٥	غير ذالك
1	 شغل الجاذبية أثناء صعود الجسم	لأعلى	یکون:				
	سالباً	ب	موجباً	ج	صفراً	٥	غير ذالك
	الله المختزنة في الوتر المشدود ·	طاقة:					
	حركية	ب	سكونيه	ج	وضع مرونية	٥	غير ذالك
	 مكن حساب الطاقة الحركية من خ	علال اا	لعلاقة الرياضية التالية:				
	القوة فقط	ب	السرعة فقط	ج	الكتلة فقط	٥	الكتلة ومربع السرعة
	 مكن حساب الطاقة الحركية من خ	علال ا	لعلاقة الرياضية التالية:				
	$KE = \frac{1}{2}m \times V$	ب	$KE = \frac{1}{2}m \times V^2$	5	$KE = 2m \times V$	٥	لا شيء مما ذكر
:		:ر					
	طاقة الوضع المرونية	ب	طاقة الوضع الجاذبية	ج	الطاقة السكونية	٥	الطاقة الكيميائية
1	 لزيادة في طاقة الوضعالنقص	ى في ط	لاقته الحركية:				
	تساوي	ب	أكبر من	ج	أصغر من	٥	لا شيء مما ذكر
	 حظة وصول كرة البندول إلى مست	وى الإ	إسناد فإنها تمتلك:				
	طاقة حركية	ب	طاقة وضع جاذبية	ج	طاقة وضع مرونية	٥	لاشيء مما ذكر
:							
	طاقة الوضع المرونية	ب	طاقة الوضع الجاذبية	ج ا	الطاقة السكونية	٥	الطاقة الكيميائية

اسم الطالب:

السؤال الأول: اكتب المصطلح العلمي المناسب:

المصطلح	العبارة	م
	مقياس للحركة الداخلية لجزيئات الجسم.	1
	الحالة التي يتساوى عندها معدلا تدفق الطاقة بين جسمين متلامسين.	2
	الطاقة التي تتدفق من الجسم الساخن الى الجسم البارد تلقائياً.	3
	عملية نقل الطاقة الحركية عند تصادم الجزيئات بعضها ببعض.	4
	حركة المائع في السائل أو الغاز بسبب اختلاف درجة درجات الحرارة.	5
	انتقال الطاقة الحرارية بوساطة الموجات الكهرومغناطيسية في الفراغ.	6
	كمية الطاقة التي يجب أن تكتسبها المادة لترتفع درجة حرارة وحدة الكتل منها درجة واحدة.	7
	أداة تستخدم لقياس التغير في الطاقة الحرارية.	8
	كمية الطاقة اللازمة لتحول $1kg$ من المادة من الحالة الصلبة الى الحالة السائلة عند درجة الانصهار.	9
	كمية الطاقة اللازمة لتحول $1kg$ من المادة من الحالة السائلة الى الحالة الغازية عند درجة الغليان.	10
	التغير في الطاقة الحرارية لجسم يساوي مقدار الحرارة المضافة الى الجسم مطروحاً منه الشغل الذي يبذله الجسم.	11
	أداة تحول الطاقة الحرارية الى طاقة ميكانيكية بصورة مستمرة.	12
	أداة تعمل على انتزاع الطاقة الحرارية من الجسم الأبرد واضافتها الى الجسم الأسخن ببذل شغل معين.	13
	مقياس للفوضى العشوائية في النظام.	14
	العمليات الطبيعية تجري في اتجاه المحافظة على الانتروبي الكلي للكون أو زيادته.	15

علم	م يدرس تحولات الطاقة الحرارية إلى أشكال أخرى من أشكال الطاقة:										
١	الديناميكا	ب	الديناميكا الحرارية	ج	الحرارة	٥	م يكانيكا الكم				
	اقة الحرارية اللازم إعطائها لكت				**	بأن (C=385J/kg.K النحاس)				
١	38. 5 J	ب	385 J	ج	3850 J	٥	3.85 J				
عند	دما يصبح معدل تدفق الطاقة الحرارية متساوياً بين الجسمين نقول عنهما أنهما في حالة اتزان:										
	سـكوني			ج	دوراني	٥	حراري				
تتوف	قف جزئيات المادة عن الحركة	عندا	لصفر:								
١	المئوي	ب	الفهرنهايتي	ج	المطلق	٥	غير ذالك				
0K	C = 300										
Î	573	ب	450	ج	127	٥	27				
لقيا	إس مقدار التغير في الطاقة الحر	رارية ن	ستخدم:								
١	البيرومتر	ب	البارومتر	ج	ميزان الحرارة	٥	المسعر				
أثناء	ء انصها المادة أو غليانها فإن در	رجة ال	حرارة:								
١	تقل	ب	تبقى ثابتة	ج	تزداد	٥	لا يمكن التنبؤ بها				
العلا	لاقة الرياضية لحساب كمية الح	حرارة أ	للازمة لتبخير كتلة سائلة ه	:ي							
١	$Q = \nabla S. T$	ب	$Q = mC\Delta T$	ج	Q = mgV	٥	$Q = mH_v$				
التو	وصيل هو أحد طرق انتقال الح	رارة وب	كون أسرع في:								
	السوائل				الغازات	٥	الجوامد				
1 عمل	لية نقل الطاقة الحركية عند تص	سادم ا	لجزيئات مع بعضها البعض	:,							
	التوصيل الحراري			ج	الإشعاع الحراري	٥	الاتزان الحراري				
	,يغة الرياضية للقانون الأول لل <u>ا</u>										
	$\Delta U = Q - W$			ج	$\Delta U = Q.W$	٥	$\Delta U = Q/W$				
1 عند	دما يعمل المحرك بصورة دائمة										
					تقل	٥	لا يمكن التنبؤ				
1 مبرد	د يعمل باتجاهين ينزع الحرارة ه	من الم	·								
Î	المحرك الحراري	ب	الثلاجة	ج	المضخة الحرارية	٥	السخان الحراري				
1 كفاء	ماءة المحركات الحرارية لاتصل الى %100 بسبب الحرارة:										
١	الكامنة	ب	المفقودة	ج	الممتصة	٥	المخزنة				
1 وحد	دة قياس الانتروبي:										
١	J/K	ب	K/J	ج	K	٥	KJ				
1 عند	ل امتصاص حرارة من الجسم ف	إن الان	تروبي للجسم:								
١	تزداد	ب	تبقى ثابتة	ج	تقل	٥	لا شيء مما ذكر				

تستخدم دوائر الكترونية حساسة للحرارة في مقاييس الحرارة:									
غير ذالك	٥	الطبية	ج	السائلة -البلورية	ب	أ المنزلية			
	لا يوجد درجة حرارة أقل من درجة:								
جميع ما سبق	٥	الصفر الفهرنهايتي	ج	الصفر المئوي		أ الصفر المطلق			
إذا امتص الجسم حرارة فإن كمية الحرارة:									
غير ذلك	٥	موجبة		صفراً		أ سالبة			
عندما يبذل الجسم شغلاً ولم تتغير درجة حرارة الجسم فإن الإنتروبي:									
لا شيء مما ذكر	٥	لا يتغير	ج	ينقص	ب	أ يزداد			

انتهت الأسئلة

