تم تحميل ورفع المادة على منصة

للعودة الى الهوقع اكتب في بحث جوجل

الملكة العربية السعودية وزارة التعليم إدارة التعليم بمنطقة عسير الثانوية السابعة عشر بأبها

أوراق عمل مادة

الذكاء الاصطناعي

الفصل الدراسي الأول

الصف الثالث ثانوي ـ مسار الحاسب والهندسة

عنوان الدرس: مقدمة في الذكاء الاصطناعي

الوحدة الأولى

الدرس الأول

الصف الثالث ثانوي الذكاء الاصطناعي

اسم الطالبة

س١: اختارى الإجابة الصحيحة لكل مما يلى :

من مجالات علوم الحاسب الآلي التي ثعني بتصميم وتطبيق البرامج القادرة على محاكاة القدرات المعرفية البشرية

- أ- هندسة البرمحيات
 - ب- هياكل البيانات
- ج- الذكاء الاصطناعي
 - د- شبكات الحاسب

برنامج يعمل نيابةً عن المُستخدم أو النظام في إدراك بيئته، وصنع القرارات، واتخاذ الإجراءات وفقًا لها

- أ- وكيل الذكاء الاصطناعي
 - ب- الشبكات العصبية
 - ج- التعلم العميق
 - د- رؤية الحاسب

برامج الحاسب المُصمَّمة لمحاكاة طريقة عمل الدماغ البشري.

- أ- وكيل الذكاء الاصطناعي
 - ب- الشبكات العصبية
 - ج- التعلم العميق
 - د- رؤية الحاسب

المجال الذي يرتبط بالذكاء الاصطناعي ويعنى بدراسة الخصائص المنطقية والرياضية لعملية صنع القرار

- ب- الرياضيات
- ج- صنع القرار
- د- علم الأعصاب

الإنسان أو غير قابل للتمييز عنه

- ب- اختبار تورنغ

لغة برمجة مُصمَّمة خصيَّصا للذكاء الاصطناعي.

- Lisp -
- ب- C++
- **Python**
 - ج-
 - د Java

ظهر روبوت الدردشة Chat GPT عام

- أ 2000
- ب- 1990
- ج- 2022
- د- 2011

المساعد الافتراضي الذي طورته شركة أبل هو

- Siri
- Alexa
- Cortana
- د Google Assistant

- أ- الفلسفة

روبوت اجتماعي مُصمَّم للتفاعل مع الأشخاص بصورة طبيعية

- أ- إلمر
- ب- هوندا
- ج- بيبر
- د- كورتانا

يقيس قدرة الآلة على إظهار سلوك ذكى مكافئ لسلوك

- أ- اختبار الذكاء
- ج- اختبار ستیب
- د- اختبار توفل

س٢: ضعى علامة (✓) أمام العبارة الصحيحة ، وعلامة (×) أمام العبارة الخاطئة لكل مما يلى:

جابة	الأ	العبارة	۴
()	يرتبط بالذكاء الاصطناعي بمجال علم التحكم الآلي والذي يُعنى بدراسة طريقة تفكير البشر	١
()	يعتبر اختبار تورنغ ناجحًا إذا تمكن الموجِّه من معرفت ما إذا كانت الإجابة مكتوبة بواسطة إنسان أم بواسطة الحاسب.	۲
()	يعتبر الاستدلال المؤتمت من إمكانات الحاسب لاجتياز اختبار تورنغ ويقصد به قدرة الحاسب على تفسير وفهم المعلومات المرئية من العالم الحقيقي	٣
()	ظهر الروبوتان: إلمر وإلسي في سبعينات القرن الماضي	٤
)	ا ستُخدِم الذكاء الاصطناعي للتنبؤ بموارد الطاقة المتجددة وتحسين استخدامها.	٥
)	لا يمكن استخدام الذكاء الأصطناعي في مجال تطبيق القانون للتنبؤ بالجرائم والحيلولة دون وقوعها.	٦

عنوان الدرس: هياكل البيانات في الذكاء الاصطناعي

الوحدة الأولى

الدرس الثاني

الصف الثالث ثانوي الذكاء الاصطناعي

اسم الطالبة

س١: اختاري الإجابة الصحيحة لكل مما يلي :

تقنية لتخزين وتنظيم البيانات في الذاكرة لاستخدامها بكفاءة.

- أ- الهياكل العصبية
 - ب- هياكل البيانات
 - ج- معالجة البيانات
 - د- تنظيم البيانات

من أنواع هياكل البيانات الأولية

- أ- المكدس
- ب- الطابور
- ج- الشجرة
- د- الأعداد الصحيحة

تعتبر الشجرة Tree من أنواع البيانات

- أ- الأولية
- ب- البسيطة
- ج- الخطية
- د- الغير خطية

هياكل البيانات التي تخرَّن عناصر البيانات في تسلسل معين ا

- ب- هياكل البيانات البسيطة

لإضافة عنصر جديد (Al) في المكدس subject في لغة البايثون نكتب الأمر

- subject.pop("AI") -1
 - subject.pop() -ب
- subject.push("AI") –ج
- د_ subject.append("AI") __

هيكل البيانات الذي يَتبع قاعدة المُضاف أولاً يَخرُج أولاً FIFO ھو

- Array -1
- ب- Stack
- ج- Linked List
 - د- Queue

تسمى عملية الإضافة في الطابور Queue

- Enqueue -1
- ب- Dequeue
 - Push
 - د Pop

لحذف عنصر في الطابور AA في لغة البايثون نكتب الأمر

- AA.push(1) -1
 - AA.pop()
- ج- (AA.push(0
- AA.pop(0)

لعرفة عدد عناصر القائمة STU واسناد القيمة للمتغير X

- نستخدم الأمر ... X=STU.len -
- STU=Len(X) -
- ج- X=len(STU)
- د_ STU(Len)=X

نوع من هياكل البيانات الخطيَّة التي تشبه سلسلة من

- أ- المصفوفة
- ب- الطابور
- ج- القائمة المترابطة
 - المكدس

- أ- هياكل البيانات الأولية
- ج- هياكل البيانات الخطية
- هياكل البيانات الغير خطيت

الصورة المقابلة تشير إلى عقدة في قائمة مترابطة ، بيانات العقدة هي

- ب- 42
- 30
- د– null

تكون قيمة المؤشر في آخر عقدة في القائمة المترابطة

- 0 -Î
- ب- null
- head ج-
- د– next

س٢: ضعي علامة (\checkmark) أمام العبارة الصحيحة ، وعلامة (\star) أمام العبارة الخاطئة لكل مما يلي:

الإجابة		العبارة	۴
()	تُحدِّد جودة البيانات وكميّتها المتوافرة دقَّة وفعالية نماذج الذكاء الاصطناعي.	١
()	هياكل البيانات لها أهمية كبيرة في الذكاء الاصطناعي لأنها توفر طريقة غير فعَّالة لتنظيم وتخزين البيانات	۲
()	قد يكون حجم الْمُكدّس ثابتًا أو متغيرًّا ديناميكيًا.	٣
()	يتبع المكدس قاعدة المُضاف آخرًا يَخرُج آخراً FIFO	٤
()	في المكدس يتم الإضافة في قمة المكدس والحذف من أسفل المكدس	٥
()	غيْض الْمُكدّس Stack Underflow ويقصد بها الانخفاض عن الحد الأدنى للسعة.	٦
()	تُطبَّق عملية إضافة عنصر للمُكدّس في لغة البايثون باستخدام دالة append	٧
()	في الطابور تتم إضافة وحذف العنصر من نفس الجانب، وفي المكدّس تتم الإضافة من جانب، بينما يتم الحذف من الجانب الآخر	٨
()	لا يمكنك إضافة عنصر أو حذفه من وسط الطابور.	٩
()	لحذف عنصر من الطابور يتم حذف العنصر المُشار إليه بالمؤشر الخلفي.	1.
()	()Name يستخدم لحذف العنصر الأول في القائمة Name	
()	عليك أن تتحقق دومًا من وجود عناصر في الطابور قبل محاولت حذف عنصر منه	۱۲
()	في هياكل البيانات الثابتة يكون حجم الهيكل ثابتًا وتُخزَّن عناصر البيانات في مواقع عشوائية في الذاكرة	۱۳
()	سرعة الوصول إلى البيانات في هياكل البيانات المتغيرة يكون أسرع من هياكل البيانات الثابتة	18
()	في القائمة المترابطة لقراءة محتوى عُقدة محددة عليك المرور على كل العُقد السابقة	10
()	تتميز القائمة المترابطة بالوصول المتسلسل إلى العناصر وسرعة إضافة العناصر وحذفها	١٦
()	العُقد في القائمة لا يكون لها اسم، ويكون لها عنوان وهو الموقع الذي تخزن فيه العُقدة في الذاكرة.	17

س٣: اكتبي حرف الإجابة الصحيحة من العمود (ب) أمام ما يناسبها من العمود (أ) :

العمود (ب)	الإجابة	العمود (أ)	
أ- تعرض وتحذف العنصر الأول من الطابور والعنصر الأخير من المُكدّس.		XX=queue.Queue()	1
ب- تضيف العنصر A إلى الطابور XX		XX.put(A)□	٢
ج- تعود بقيمت True إن كان الطابور فارغاً		XX.qsize()	٣
د- تنشئ طابورًا جديدًا اسمه XX		XX.get()	Ε
🚗- تنشئ مُكدّساً جديدًا اسمه XX	\	XX.full⊘□	0
و - تعود بقيملاً True إن كان الطابور ممتلئًا		XX.empty()	٦
ز- تعود بقيمة حجم الطابور		XX=queue.LifoQueue()	V

عنوان الدرس: هياكل البيانات غير الخطية

الوحدة الأولى الدرس الثالث الصف الثالث ثانوي الذكاء الاصطناعي

اسم الطالبة

نوع من هياكل البيانات يتميز بإمكانية ربط عنصر بأكثر من عنصر واحد في الوقت نفسه.

- أ- هياكل البيانات البسيطة
 - ب- هياكل البيانات الأولية
- ج- هياكل البيانات الخطية
- د- هياكل البيانات الغير خطية

العُقدة الأولى والوحيدة في الشجرة التي ليس لها أصل وتأتي في المستوى الأول من الشجرة

- أ- الأصل
- ب- الفرع
- ج- الجذر
- د- الورقة

في الصورة المرفقة أدناه تعتبر العقدة 🗿

- أ- جذر
- ب- أصل
- ج- ورقت
- د- حافت

العقد الأشقاء في الصورة المرفقة أدناه هم

- **2** , **0** −i
- ب- 2 و 4 و 5
- ج- 5 و6 و 7
 - د- 2 و 3

تعتبر العقدة 5 في الصورة المرفقة أدناه.....

- أ- أصل للعقدة 2
- ب- فرع للعقدة 🕝
- ج- شقيق للعقدة 😉

 - د- فرع للعقدة 2

س١: اختاري الإجابة الصحيحة لكل مما يلي :

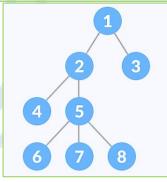
نوع خاص من الأشجار، يكون لكلّ عُقدةٍ فيها فرعان على الأكثر

- أ- الشجرة الثنائبة
- ب- الشجرة المركبة
- ج- الشجرة الموجهة
- د- الشحرة المضاعفة

الشجرة الثنائية التي يكون لكلَّ عُقدة إمَّا 0 أو 2 من الفروع بخلاف الأوراق هي

- أ- الشجرة الثنائية الكاملة
- ب- الشجرة الثنائية التامة
- ج- الشجرة الثنائية الكاملة
- د- الشجرة الثنائية المتفرعة

الحلول المتملة للمشكلة في شجرة القرار تكون في


- أ- الحذر
- ب- الأوراق
- ج- الأصول
- د- الأشقاء

في هيكل بيانات المخطط تشكّل العُقد المتصلة فيها نموذجاً

- أ- خطباً
- ب- هرمياً
- ج- شبکیاً
- د- متفرعاً

في هذا النوع من المخطط يتم ربط العقد بحيث يكون للحافة اتحاه واحد فقط

- أ- المخطط البسيط
- ب- المخطط المركب
 - ج- المخطط الموجه
- د- المخطط الغير موجه

س۲: ضعى علامة (√) أمام العبارة الصحيحة ، وعلامة (×) أمام العبارة الخاطئة لكل مما يلى:

نابة	الإج	العبارة	۴
()	هياكل البيانات الغير خطية تُستَعرض عناصر البيانات في مسار واحد	١
()	تتكون الشجرة Tree من مجموعة من العُقد المُرتَّبة في ترتيب هرمي	۲
()	هِ هيكل بيانات الشجرة قد تكون العُقدة فرعًا و أصلاً في الوقت نفسه	٣
()	الشجيرات التي توجد داخل الشجرة الأكبر حجمًا تسمى شجرة القرار	٤
()	في هيكل بيانات الشجرة من الصعب إضافة عنصر أو حذفه	٥
()	تنظيم الملفات في نظام التشغيل هو مثال عملي على الشجرة	٦
()	هذه الشجرة تمثل الشجرة الثنائية المثالية 100 1 6 14 4 7 13	v
()	في شجرة القرار كل عُقدة باستثناء الأوراق ترتبط بحالة منطقية يتفرع منها احتمالان (نعم أو لا)	٨
()	كل الأشجار مخَطُّطات، ولكن ليست كل المُخطِّطات أشجارًا.	٩
()	في هيكل بيانات المخطط توجد عُقدة فريدة تُسمى الجِذر.	1.
()	ـــــــــــــــــــــــــــــــــــــ	11

س٣: بناء على المقطع البرمجي التالي ارسمي الشجرة التي يمثلها هذا المقطع:

```
MyTree={
    "html":["head","body"],
    "head":["meta","title"],
    "meta":[None],
    "title":[None],
    "body":["ul","h1","h2"],
    "ul":["li","li"],
    "h1":[None],
    "h2":["a"],
    "li":[None],
    "li":[None],
    "a":[None],
}
print(MyTree)
```

س٤: اكتبى المقطع البرمجي بلغة البايثون لطباعة عناصر المخطط التالي :

1 2
5 4
6

مارة التعليم Ministry of Education مدرستی Madasati	التاريخ: / / مه١٤٤هـ		عنوان الدرس الاستدعاء الذاذ	الوحدة الثانية الدرس الأول	الصف الثالث ثانوي مادة الذكاء الاصطناعي ١-١	
الفصل:		••••••		•	اسم الطالبة	
سا: اختاري الإجابة الصحيحة لكل مما يلي : ١ استدعاء الدالة لنفسها يسمى ٢ الحالة التي تتوقف عندها الدالة عن استدعاء نفسها تسمى						
تنازلى أ- الحالة الأساسية					أ- الاستدعاء ال	

יי ייטי	تداري الإجابة الصحيحة لحل مما يتي :				
١	استدعاء الدالة لنفسها يسمى	zil Y	الة التي تتوقف عندها الدالة عن استدعاء نف	نسها	سمی
·Ī	الاستدعاء التنازلي	-i	الحالة الأساسية		
ب	الاستدعاء التصاعدي	ب-	الحالة التكرارية		
ج	الاستدعاء التكراري	ج-	الحالة الأخيرة		
د.	الاستدعاء المحول	-s	الحالة المؤقتة		
		Z. N			
יון: נ	ىعي علامة (\checkmark) أمام العبارة الصحيحة ، وعلامة ($^ imes$	د) أمام العيارة	الخاطئة لكل مما يلى:		
۵	العا	ž,	<u> </u>	71	ابة
				· \	-
,	يحدث الاستدعاء الذاتي عندما تتكرر التعليمات نفسه	ا، ولكن مع بيانا	ت محتلفة وأقل تعقيدا.)	(
۲	تزيد دوال الاستدعاء التكرارية من عدد التعليمات 😩 ا	المقطع البرمجي)	(
٣	يتطلب الاستدعاء الذاتي مزيدًا من الذاكرة والوقت.)	(
٤	ينتهي الاستدعاء التكراري باستكمال العدد المحدّد من الحالم الأساسيم.	التكرارات بينما	ينتهي التكرار بمجرد الوصول إلى)	(
٥	يحدث الاستدعاء التكراري اللانهائي عندما لا تصل ال	دالة إلى الحالة	الأساسية)	(
٦	يؤدي الاستدعاء التكراري اللانهائي إلى غيض الذاكر	رة)	(
٧	يمكن تقسيم المهمة إلى مجموعة من المشكلات الفرعي	بت باستخدام الا،	عتدعاء الذاتي)	(
٨	الاستدعاء الذاتي يتطلب حجم ذاكرة أقل مقارنت بالا	تكرار)	(

س٣: مستخدمة الاستدعاء التكراري اكتبي مقطعاً برمجياً بحيث يقوم المستخدم بإدخال رقم ؛ ثم يقوم البرنامج بحساب حاصل جمع ذلك العدد مع جميع الأعداد الأقل منه حتى يصل إلى الصفر . ﴿ اللهِ الْعَلَى الْمُعْلَى الْعَلَى الْعَلَى

وزارة التحــليم
Ministry of Education
مدرستی مدرستی Madrasati
: Madrasatiالفصل:

	عنوان الدرس:
التاريخ: / / / ١٤٤٥	إرزمية البحث بأولوية العمق
1220 / /	والبحث بأولوية الاتساع

÷	الثانيت	Z	,	د
	. alàti			

الصف الثالث ثانوي مادة الذكاء الاصطناعي الدال الدرس ا

اسم الطالبة

والمناع والوابعة الاسلام

س١: اختارى الإجابة الصحيحة لكل مما يلى :

في خوارزمية البحث بأولوية الاتساع (BFS)يستخدم هيكل البيانات لتتبع العقد التي تم فحصها

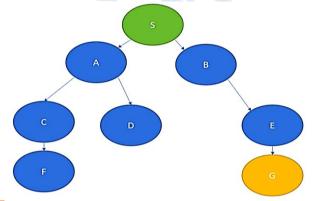
- أ- المكدس
- ب- الطابور
- ج- القائمة المترابطة
 - د- المخطط

في خوارزمية البحث بأولوية العمق (DFS)يستخدم هيكل البيانات لتتبع مسار الاستكشاف

- أ- المكدس
- ب- الطابور
- ج- القائمة المترابطة
 - د- الخطط

ليس من التطبيقات العملية لخوارزمية البحث بأولوية الاتساعBFS

- أ- شبكات النظير للنظير
- ب- شبكات التواصل الاجتماعي
 - ج- حل المتاهات
 - د- نظم الملاحة


خوارزمية البحث التي يُفَضل استخدامها عندما يكون هيكل المُخطَّط ضيقاً وطويلاً

- أ- البحث بأولوية الاتساع
- ب- البحث بأولوية العمق
- . ج- البحث بأولوية الأفضل
- د- البحث بأولوية الأقصر

س۲: ضعى علامة (√) أمام العبارة الصحيحة ، وعلامة (×) أمام العبارة الخاطئة لكل مما يلى:

	الإجابة	العبارة	۴
()	تستكشف خوارزمية البحث بأولوية الاتساع (BFS) المُخطَّط من عقدة الجذر نزولاً إلى الأوراق	1
()	في خوارزمية البحث بأولوية الاتساع (BFS) عليك فحص كل العُقد في المستوى 1 قبل الانتقال إلى العُقد في المستوى 2.	۲
()	في خوار زمية البحث بأولوية الاتساع (BFS) ستقوم باتباع الحواف، وتتعمق أكثرو أكثر في المخُطّط	٣
()	َيستخدِم البحث بأولوية العمق(DFS) إجراء استدعاء تكراري للتنقل عبر العُقد.	٤
()	خوار زمية البحث بأولوية العمق(DFS) تبحث عن مسار الوجهة باستخدام أقل عدد من الحواف.	٥
()	في خوارزمية البحث بأولوية العمق (DFS) يتم فحص عُقد الأشقاء قبل الفروع بينما في خوارزمية البحث بأولوية الاتساع (BFS) يتم فحص عُقد الفروع قبل الأشقاء.	٦

س٣: قومي بكتابة العقد التي تم فحصها عند تطبيق خوارزميات البحث المختلفة على الشجرة التالية :

باستخدام خوارزمية البحث بأولوية العمق (DFS)

باستخدام خوارزمية البحث بأولوية الاتساع (BFS)

المملكة العربية السعودية وزارة التعليم إدارة التعليم بمنطقة عسير الثانوية السابعة عشر بأبها

حل أوراق عمل مادة

الذكاء الاصطناعي

الفصل الدراسي الأول

الصف الثالث ثانوي ـ مسار الحاسب والهندسة

Lisp -1

2000 -Î

1990

2022 2011

Siri

ب–

ج-

Alexa

Cortana

Google Assistant

C++

Python د Java

لغة برمجة مُصمَّمة خصيِّصا للذكاء الاصطناعي.

المساعد الافتراضي الذي طورته شركة آبل هو

روبوت اجتماعي مُصمَّم للتفاعل مع الأشخاص بصورة طبيعية

عنوان الدرس: مقدمة في الذكاء الاصطناعي

الوحدة الأولى الدرس الأول

الصف الثالث ثانوي الذكاء الاصطناعي

اسم الطالبة

س١: اختارى الإجابة الصحيحة لكل مما يلى :

من مجالات علوم الحاسب الآلي التي ثعني بتصميم وتطبيق البرامج القادرة على محاكاة القدرات المعرفية البشرية

- أ هندسة البرمحيات
 - ب- هياكل البيانات
- ج- الذكاء الاصطناعي
 - د شبكات الحاسب

برنامج يعمل نيابةً عن المُستخدم أو النظام في إدراك بيئته، ظهر روبوت الدردشة Chat GPT عام

- أ— وكيل الذكاء الأصطناعي
 - ب- الشبكات العصبية
 - ج- التعلم العميق
 - د- رؤية الحاسب
- وصنع القرارات، واتخاذ الإجراءات وفقًا لها
- برامج الحاسب المُصمَّمة لحاكاة طريقة عمل الدماغ البشري.
 - أ- وكيل الذكاء الاصطناعي
 - ب– الشبكات العصبية
 - ج- التعلم العميق
 - د- رؤية الحاسب
 - الجال الذي يرتبط بالذكاء الاصطناعي ويعنى بدراسة

 - ج- صنع القرار

- - أ- إلمر
 - ب- هوندا
 - ج- بيبر
- د- كورتانا

الخصائص المنطقية والرياضية لعملية صنع القرار

- أ- الفلسفة
- ب- الرياضيات
- د- علم الأعصاب

يقيس قدرة الآلة على إظهار سلوك ذكى مكافئ لسلوك الإنسان أوغير قابل للتمييز عنه

- أ- اختبار الذكاء
 - ب- اختبار تورنغ
 - ج- اختبار ستیب
 - د- اختبار توفل

س٢: ضعى علامة (√) أمام العبارة الصحيحة ، وعلامة (×) أمام العبارة الخاطئة لكل مما يلى:

	العبارة		۴	
	(×)		يرتبط بالذكاء الاصطناعي بمجال علم التحكم الآلي والذي يُعنى بدراسة طريقة تفكير البشر	1
يعتبر اختبار تورنغ ناجحًا إذا تمكن الموجِّه من معرفة ما إذا كانت الإجابة مكتوبة بواسطة إنسان أم بواسطة الحاسب.		۲		
(×)			يعتبر الاستدلال المؤتمت من إمكانات الحاسب لاجتياز اختبار تورنغ ويقصد به قدرة الحاسب على تفسير وفهم المعلومات المرئية من العالم الحقيقي	٣
	(×)	<mark>)</mark>	ظهر الروبوتان: إلمر وإلسي في سبعينات القرن الماضي	٤
	(✓))	ا ستُخدِم الذكاء الاصطناعي للتنبؤ بموارد الطاقة المتجددة وتحسين استخدامها.	٥
/	(×)		لا يمكن استخدام الذكاء الاصطناعي في مجال تطبيق القانون للتنبؤ بالجرائم والحيلولة دون وقوعها.	٦

التاريخ: / / مماده

عنوان الدرس: هياكل البيانات في الذكاء الاصطناعي

الوحدة الأولى

الدرس الثاني

الصف الثالث ثانوي مادة الذكاء الأصطناعي ا-ا

اسم الطالبة

س١: اختارى الإجابة الصحيحة لكل مما يلى :

تقنية لتخزين وتنظيم البيانات في الذاكرة لاستخدامها بكفاءة.

- أ- الهياكل العصبية
 - ب- <mark>هياكل البيانات</mark>
 - ج- معالجة البيانات
 - د- تنظيم البيانات

من أنواع هياكل البيانات الأولية

- أ- ا**لكدس**
- ب- الطابور
- ج- الشجرة
- د الأعداد الصحيحة

تعتبر الشجرة Tree من أنواع البيانات

- أ- الأولية
- ب- البسيطة
- ج- الخطية
- د- الغير خطيت

هياكل البيانات التي تُخزَّن عناصر البيانات في تسلسل معين هي..

- أ- هياكل البيانات الأولية
- ب- هياكل البيانات البسيطة
- ج- هياكل البيانات الخطية
- هياكل البيانات الغير خطية

لإضافة عنصر جديد (Al) في المكدس subject في لغة البايثون نكتب الأمر

- subject.pop("AI") -1
 - subject.pop() -ب
- subject.push("AI") -ج
- subject.append("AI") \(\)

هيكل البيانات الذي يَتبع قاعدة الْمُضافَ أُولاً يَخْرُج أُولاً

FIFO هو

- Array −1
- ب- Stack
- ج- Linked List
 - د– Queue

تسمى عملية الإضافة في الطابور Queue

- Enqueue -1
- ب- Dequeue
 - Push -
 - د– Pop
- الخذف عنصر في الطابور AA في لغة البايثون نكتب الأمر
 - AA.push(1) -i
 - AA.pop() -
 - ج- (AA.push(0
 - AA.pop(0) 1
- لعرفة عدد عناصر القائمة STU واسناد القيمة للمتغير X نستخدم الأمر ...
 - X=STU.len −i
 - ے STU=Len(X) −
 - ج- <mark>X=len(STU)</mark>
 - د STU(Len)=X

نوع من هياكل البيانات الخطيَّة التي تشبه سلسلة من العُقد

- أ- المصفوفة
- ب- الطابور
- ج- القائمة المترابطة
 - المكدس ا
- الصورة المقابلة تشير إلى عقدة في قائمة
- الصورة المابلة نسير إلى عقدة في قائمة مترابطة ، بيانات العقدة هي
 - **20** −Î
 - ب- <mark>42</mark>
 - ج- 30
 - د– null
- ا تكون قيمة المؤشر في آخر عقدة في القائمة المترابطة
 - 0 –Î
 - ى– null
 - ہے۔ head
 - next -

س٢: ضعي علامة (\checkmark) أمام العبارة الصحيحة ، وعلامة (\star) أمام العبارة الخاطئة لكل مما يلي:

الإجابة	العبارة	۴
(✓)	تُحدِّد جودة البيانات وكميّتها المتوافرة دقت وفعاليت نماذج الذكاء الاصطناعي.	١
<mark>(×)</mark>	هياكل البيانات لها أهمية كبيرة في الذكاء الاصطناعي لأنها توفر طريقة غير فعّالة لتنظيم وتخزين البيانات	۲
(✓)	قد يكون حجم الْمُكدّس ثابتًا أو متغيرًّا ديناميكيًا.	٣
<mark>(×)</mark>	يتبع المكدس قاعدة المُضاف آخراً يَخرُج آخراً FIFO	٤
(×)	في المكدس يتم الإضافة في قمة المكدس والحذف من أسفل المكدس	٥
(✓)	غَيْض الْمُكدّس Stack Underflow ويقصد بها الانخفاض عن الحد الأدنى للسعة.	٦
(✓)	تُطبَّق عملية إضافة عنصر للمُكدّس في لغة البايثون باستخدام دالة append	٧
(×)	في الطابور تتم إضافة وحذف العنصر من نفس الجانب، وفي المكدّس تتم الإضافة من جانب، بينما يتم الحذف من الجانب الآخر	٨
(✓)	لا يمكنك إضافة عنصر أو حذفه من وسط الطابور.	٩
(×)	لحذف عنصر من الطابور يتم حذف العنصر المشار إليه بالمؤشر الخلفي.	1.
(×)	()Name.pop يستخدم لحذف العنصر الأول في القائمة Name	11
<mark>(✓)</mark>	عليك أن تتحقق دومًا من وجود عناصر في الطابور قبل محاولة حذف عنصر منه	۱۲
(×)	في هياكل البيانات الثابتة يكون حجم الهيكل ثابتًا وتُخزَّن عناصر البيانات في مواقع عشوائية في الذاكرة	۱۳
(×)	سرعة الوصول إلى البيانات في هياكل البيانات المتغيرة يكون أسرع من هياكل البيانات الثابتة	18
(✓)	في القائمة المترابطة لقراءة محتوى عُقدة محددة عليك المرور على كل العُقد السابقة	10
(✓)	تتميز القائمة المترابطة بالوصول المتسلسل إلى العناصر وسرعة إضافة العناصر وحذفها	١٦
(✓)	العُقد في القائمة لا يكون لها اسم، ويكون لها عنوان وهو الموقع الذي تخزن فيه العُقدة في الذاكرة.	17

س٣: اكتبي حرف الإجابة الصحيحة من العمود (ب) أمام ما يناسبها من العمود (أ) :

رب اسام به یکسیک بی استور (۱۰)	, -5	۔ ۔	. صبي حرص ، دِب به ، حصيص ،	
العمود (ب)	بة	الإجا	العمود (أ)	
أ- تعرض وتحذف العنصر الأول من الطابور والعنصر الأخير من المُكدّس.		د	XX=queue.Queue⊜□	- 1
ب- تضيف العنصر A إلى الطابور XX		<mark>ب</mark>	XX.put(A)□	Γ
ج- تعود بقيمت True إن كان الطابور فارغاً		<mark>ز</mark>	XX.qsize()	٣
د- تنشئ طابورًا جديدًا اسمه XX		İ	XX.get()	Ε
🖦 تنشئ مُكدّساً جديدًا اسمه XX		9	XX.full _O	0
و - تعود بقيمة∏True إن كان الطابور ممتلئًا		2	XX.empty()	٦
ز- تعود بقيمة حجم الطابور		<u> </u>	XX=queue.LifoQueue()	V

Pيلحت Ministry of E		
درستي Madras	-0 sati	
 	لفصل:	1

عنوان الدرس: هياكل البيانات غير الخطية

الوحدة الأولى الدرس الثالث

الصف الثالث ثانوي الذكاء الاصطناعي

اسم الطالبة

س١: اختاري الإجابة الصحيحة لكل مما يلي :

نوع من هياكل البيانات يتميز بإمكانية ربط عنصر بأكثر من عنصر واحد في الوقت نفسه.

- أ- هياكل البيانات البسيطة
- ب- هياكل البيانات الأولية
- ج- هياكل البيانات الخطية
- د- هياكل البيانات الغير خطيم

العُقدة الأولى والوحيدة في الشجرة التي ليس لها أصل وتأتي في المستوى الأول من الشجرة

- أ- الأصل
- ب- الفرع
- ج- الجذر
- د- الورقة

في الصورة المرفقة أدناه تعتبر العقدة ᢃ

- ب- أصل
- ج- <mark>ورقت</mark>

العقد الأشقاء في الصورة المرفقة أدناه هم

- أ- 🕕 و 🖸
- ب- 2و4و5
- ج- 5 و 6 و 7
 - د _ 2 و 🗈

تعتبر العقدة 垣 في الصورة المرفقة أدناه......

- أ- أصل للعقدة 2
- ب- فرع للعقدة 🕖
- ج- شقيق للعقدة 🕃
 - د فرع للعقدة 🕗

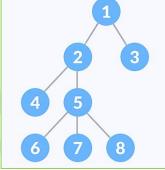
نوع خاص من الأشجار، يكون لكلّ عُقدة فيها فرعان على

- أ- الشحرة الثنائية
- ب- الشجرة المركبة
- ج- الشجرة الموجهة
- د- الشجرة المضاعفة

الشجرة الثنائية التي يكون لكلِّ عُقدة إمَّا 0 أو 2 من الفروع بخلاف الأوراق هي

- أ- الشجرة الثنائية الكاملة
- الشجرة الثنائية الكاملة
- د- الشجرة الثنائية المتفرعة

الحلول المحتملة للمشكلة في شجرة القرار تكون في

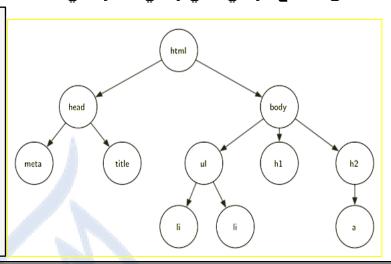

- أ- الحذر
- ب- <mark>الأوراق</mark>
- ج- الأصول
- د- الأشقاء

في هيكل بيانات المخطط تشكّل العُقد التصلة فيها نموذجاً

- أ- خطباً

في هذا النوع من المخطط يتم ربط العقد بحيث يكون للحافة اتحاه واحد فقط

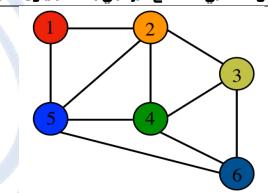
- أ- المخطط البسيط
- ب- المخطط المركب
 - ₹ المخطط الموجه
- المخطط الغير موجه



س٢: ضعى علامة (\checkmark) أمام العبارة الصحيحة ، وعلامة (x) أمام العبارة الخاطئة لكل مما يلى:

الإجابة	العبارة	م
(×)	هياكل البيانات الغير خطية تُستَعرض عناصر البيانات في مسار واحد	١
(✓)	تتكون الشجرة Tree من مجموعة من العُقد المُرتَّبة في ترتيب هرمي	۲
(✓)	في هيكل بيانات الشجرة قد تكون العُقدة فرعًا و أصلاً في الوقت نفسه	٣
(×)	الشجيرات التي توجد داخل الشجرة الأكبر حجمًا تسمى شجرة القرار	٤
(×)	في هيكل بيانات الشجرة من الصعب إضافة عنصر أو حذفه	٥
(✓)	تنظيم الملفات في نظام التشغيل هو مثال عملي على الشجرة	٦
(×)	هذه الشجرة تمثل الشجرة الثنائية المثالية 10 1 6 14 4 7 3	v
(✓)	في شجرة القرار كل عُقدة باستثناء الأوراق ترتبط بحالة منطقية يتفرع منها احتمالان (نعم أو لا)	٨
(✓)	كل الأشجار مخُطُّطات، ولكن ليست كل المُخطِّطات أشجارًا.	٩
(×)	في هيكل بيانات المخطط توجد عُقدة فريدة تُسمى الجِذر.	1.
(✓)	تُعدّ شبكة الويب العالمية من أبرز الأمثلة للمُخططات، ويمكن اعتبارها بمثابة أحد أنواع المخططات المُوجّهة	11

س٣: بناء على المقطع البرمجي التالي ارسمي الشجرة التي يمثلها هذا المقطع:


```
MyTree={
    "html":["head","body"],
    "head":["meta","title"],
    "meta":[None],
    "title":[None],
    "body":["ul","h1","h2"],
    "ul":["li","li"],
    "h1":[None],
    "h2":["a"],
    "li":[None],
    "li":[None],
    "a":[None],
}
print(MyTree)
```


س٤: اكتبي المقطع البرمجي بلغة البايثون لطباعة عناصر المخطط التالي :

```
A={
    1:[2,5],
    2:[1,5,4,3],
    3:[2,4,6],
    4:[2,3,5,6],
    5:[1,2,4,6],
    6:[3,4,5],
}
print (A)

{1: [2,5], 2: [1,5,4,3], 3: [2,4,6], 4: [2,3,5,6], 5: [1,2,4,6], 6: [3,4,5]}
```


صلحتاا قالة Ministry of Education	التاريخ: / / ١٤٤٥هـ	عنوان الدرس: الاستدعاء الذاتي	الوحدة الثانية الدرس الأول	الصف الثالث ثانوي مادة الذكاء الاصطناعي ١-١
الفصل:				اسم الطالبت

س١: اختارى الإجابة الصحيحة لكل مما يلى :

العالة التي تتوقف عندها الدالة عن استدعاء نفسها تسمى أ- الاستدعاء التنازلي أ- الحالة الأساسية ب- الاستدعاء التصاعدي ب- الحالة التكرارية ج- الاستدعاء التكراري د- الحالة الأخيرة د- الاستدعاء المحول د- الحالة المؤقتة

س٢: ضعى علامة (\checkmark) أمام العبارة الصحيحة ، وعلامة (\star) أمام العبارة الخاطئة لكل مما يلى:

الإجابة	العبارة	م
<u>(✓)</u>	يحدث الاستدعاء الذاتي عندما تتكرر التعليمات نفسها، ولكن مع بيانات مختلفة وأقل تعقيدًا.	١
(×)	تزيد دوال الاستدعاء التكرارية من عدد التعليمات في المقطع البرمجي	۲
(✓)	يتطلب الاستدعاء الذاتي مزيدًا من الذاكرة والوقت.	٣
<mark>(×)</mark>	ينتهي الاستدعاء التكراري باستكمال العدد المحدّد من التكرارات بينما ينتهي التكرار بمجرد الوصول إلى الحالة الأساسية.	٤
(✓)	يحدث الاستدعاء التكراري اللانهائي عندما لا تصل الدالة إلى الحالة الأساسية	٥
(×)	يؤدي الاستدعاء التكراري اللانهائي إلى غيض الذاكرة	٦
(✓)	يمكن تقسيم المهمة إلى مجموعة من المشكلات الفرعية باستخدام الاستدعاء الذاتي	٧
(×)	الاستدعاء الذاتي يتطلب حجم ذاكرة أقل مقارنة بالتكرار	٨

س": مستخدمة الاستدعاء التكراري اكتبي مقطعاً برمجياً بحيث يقوم المستخدم بإدخال رقم ؛ ثم يقوم البرنامج بحساب حاصل جمع ذلك العدد مع جميع الأعداد الأقل منه حتى يصل إلى الصفر \sum_{0}^{x}

```
In [1]: def mysum(X):
    if X==0:
        return 0
    else:
        return X+mysum(X-1)

X=int(input("Enter number:"))
A=mysum(X)
print("the sum=", A)

Enter number:4
the sum= 10
```


	. : :	
مايم	ّ • • • • • • • • • • • • • • • • • • •	ıljg
Ministryo	f Educo	ation
		er i
رستتي _{Madr}	مد asati	
 		الفصل:

	ِس:
التاريخ: / / ١٤٤٥	ولوية العمق
1220 /	الاتساء

عنوان الدرس:
خوارزمية البحث بأولوية العمق
والبحث بأولوية الاتساع

الوحدة الثانية	
الدرس الثاني	

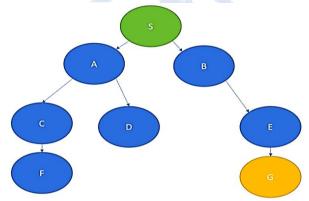
الصف الثالث ثانوي
مادة
الذكاء الاصطناعي
 1–1

اسم الطالبة

س١: اختاري الإجابة الصحيحة لكل مما يلي :

- في خوارزمية البحث بأولوية الاتساع (BFS) يستخدم هيكل البيانات لتتبع العقد التي تم فحصها
 - أ- المكدس
 - ب- <mark>الطابور</mark>
 - ج- القائمة المترابطة
 - د- المخطط

- ليس من التطبيقات العملية لخوارزمية البحث بأولوية الاتساعBFS
 - أ- شبكات النظير للنظير
 - ب- شبكات التواصل الاجتماعي
 - <mark>حل المتاهات</mark>
 - د- نظم الملاحة
- في خوارزمية البحث بأولوية العمق (DFS)يستخدم هيكل البيانات لتتبع مسار الاستكشاف
 - أ- المكدسي
 - ب- الطابور
 - ج- القائمة المترابطة
 - د- المخطط


- خوارزمية البحث التي يُفَضل استخدامها عندما يكون هيكل المخطط ضيقا وطويلا
 - أ- البحث بأولوية الاتساع

 - ج- البحث بأولوية الأفضل
 - د- البحث بأولوية الأقصر

س٢: ضعى علامة (\checkmark) أمام العبارة الصحيحة ، وعلامة (\star) أمام العبارة الخاطئة لكل مما يلى:

الإجابة	العبارة	۴
(×)	تستكشف خوارزمية البحث بأولوية الاتساع (BFS) المُخطَّط من عقدة الجذر نزولاً إلى الأوراق	1
<mark>(✓)</mark>	في خوارزمية البحث بأولوية الاتساع (BFS) عليك فحص كل العُقد في المستوى 1 قبل الانتقال إلى العُقد في المستوى 2.	۲
(×)	في خوار زمية البحث بأولوية الاتساع (BFS) ستقوم باتباع الحواف، وتتعمق أكثر و أكثر في المخُطِّط	٣
<mark>(✓)</mark>	َيستخدِم البحث بأولوية العمق(DFS) إجراء استدعاء تكراري للتنقل عبر العُقد.	٤
(×)	خوارزمية البحث بأولوية العمق(DFS) تبحث عن مسار الوجهة باستخدام أقل عدد من الحواف.	٥
(×)	في خوارزمية البحث بأولوية العمق(DFS) يتم فحص عُقد الأشقاء قبل الفروع بينما في خوارزمية البحث بأولوية الاتساع (BFS) يتم فحص عُقد الفروع قبل الأشقاء.	٦

س٣: قومي بكتابة العقد التي تم فحصها عند تطبيق خوارزميات البحث المختلفة على الشجرة التالية :

باستخدام خوارزمية البحث بأولوية العمق (DFS)

باستخدام خوارزمية البحث بأولوية الاتساع (BFS)

S - A - C - F - D - B - E - G

S - A - B - C - D - E - F - G

